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Complexity of routes to chaos and global regularity of fractal dimensions in bimodal maps
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The dual-star composition rule of doubly superstable~DSS! sequences presents a complete renormalizable
algebraic structure for studying Feigenbaum’s metric universality and self-similar classification of DSS se-
quences in symbolic dynamics of bimodal maps of the interval. Here an important feature is that the complete
combinations of up- and down-star products create all the generalized Feigenbaum’s routes of transitions to
chaos. These routes can be classified into two types: one consists of countably infinitely many regular routes
which preserve Feigenbaum’s metric universality; another consists of uncountably infinitely many universal
nonscaling routes described by the irregularly mixed dual-star products, which break Feigenbaum’s asymp-
totically convergent metric universality although they are structurally universal. The combinatorial complexity
of dual-star products may increase the grammatical complexity of languages of symbolic dynamics. Moreover,
it is found that there exists a global regularity between the fractal dimensionsd and the scaling factors
$aC ,aD% for Feigenbaum-type attractors:d(Z)loguZuuaC(Z)aD(Z)u5b(2), whereb (2) is independent of the con-
crete DSS sequencesZ. @S1063-651X~99!07508-X#

PACS number~s!: 05.45.2a, 45.05.1x
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I. INTRODUCTION

The Derrida-Gervois-Pomeau~DGP! star composition@1#
of symbolic sequences is a powerful and valuable tool
studying metric universalities@2–4# in symbolic dynamics of
unimodal maps@5–10#. It presents a complete algebra
structure for renormalization. When maps change from u
modal to bimodal ~e.g., two-parameter cubic families!,
physical systems become more complicated. Thus,
should establish an algebraic composition rule for bimo
maps. The physical motivation for a study of bimodal ma
comes from the fact that it can help to understand the
namics of trimodal or multimodal maps@11#, degree-1 circle
maps@12–14#, and Lorenz maps@15–19#. After efforts of
about 20 years, a rigorous generalization of the DGP
composition rule, namely, the normaldual-starcomposition
rule for bimodal maps@20,21#, has been found.

During the course of solving this problem, there ha
been many significant studies. MacKay and Tresser@13,14#
presented a description of symbolic dynamics for the kne
ing plane and conducted a fundamental research on
period-doubling bifurcation~PDB! for bimodal maps. They
gave the boundary of topological chaos and the complete
of monotone equivalent classes of bimodal maps for the
quences with periods 2n. Mumbrú @22# and Llibre and
Mumbrú @23# made an extension of the star product for
modal maps which is restricted to four kinds of special
quences, namely,C1, C2, C1C2, and C2C1 sequences
they also presented the mother operator for bimodal m
@24#, which is an effective tool for the study of renormaliz
tion @25,26# and periodic structure. Ringland and co-work

*Electronic address: kfcao@ynu.edu.cn
†Electronic address: slpeng@ynu.edu.cn
‡Mailing address.
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@27,28# generated a genealogy of finite kneading sequen
by using the hierarchical transformations for thea seed,c
seeds, andx seed. They presented all monotone equivale
classes and an important zero entropy class. Bruckset al.
@29# discussed a generalization of the star product trans
mation to multimodal maps by introducing linear graphs
permutations, which is based on an investigation of the f
torization of permutations into products of permutations.
this generalization, however, the star product cannot be
scribed explicitly in terms of the symbols of its factors. R
cently, in the order topological spaceS3 of three letters, we
presented explicit algebraic composition rules of dual-s
products which can form all the equal topological entro
classes@30–34# in which all the Feigenbaum’s universalitie
@2–4# are contained. On the basis of dual-star products,
can deepen and promote the understanding of knowledg
the following aspects:

~i! Generalization of Feigenbaum’s metric universality. In
unimodal maps, an arbitrary period-p-tupling bifurcation
(PpTB) can be described by the DGP star product (WC)* n

of basic periodp, with the metrically universal convergen
rate d(WC) and scaling factora(WC), which returns to a
PDB whenWC is replaced by period-2 superstable seque
RC. Similarly in bimodal maps, for each doubly superstab
~DSS! periodic sequenceXDYC, the dual-star products pro
vide us with two bifurcation modes, up-bifurcation an
down-bifurcation, described by (XDYC)* n, * P$ *̄ ,* %; and
universal constantsd and a of unimodal maps are genera
ized to a pair of universal convergent rates$d̄,d% and two
pairs of universal scaling factors$āC ,āD% and $aC ,aD%
~notations corresponding to*̄ ,* ) with dual symmetry, which
are all contained in the equal topological entropy class
XDYC. Here the dual symmetry of metric universal co
stants may lead to the duality of renormalization group eq
tions which may be a system of equations.
2745 © 1999 The American Physical Society
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2746 PRE 60KE-FEI CAO AND SHOU-LI PENG
~ii ! Complexity and diversity of the generalized Feige
baum’s routes of transitions to chaos. The two bifurcation
modes of dual-star products complicate the routes to chao
bimodal maps much more than in unimodal maps. In unim
dal maps, the routes to chaos are PDB’s@including the main
(RC)* n, and the associatedAC* (RC)* n# and arbitrary
PpTBs @(WC)* n andAC* (WC)* n], their formal languages
belong to the type-3~finite n) and type-1 (n→`) languages
of the Chomsky hierarchy@35#; however, the type-2 lan
guages have not yet been found@36#. In bimodal maps, the
two bifurcation modes result in an infinite number of com
binatorial patterns of dual-star products. The regularly mix
dual-star products create a countably infinite number of re
lar routes to chaos which preserve both the structural and
metric universalities. While the irregularly mixed dual-st
products form an uncountably infinite number of irregu
routes to chaos, which break Feigenbaum’s~asymptotically
convergent! metric universality although they are structura
universal. So the complexity of routes to chaos comes fr
the combinatorial complexity of patterns of dual-star pro

ucts $ *̄ ,* %. Such complexity does not exist in the order t
pological spaceS2 of two letters of unimodal maps. On th
one hand, all the patterns of$ *̄ ,* % correspond to practica
bifurcations and form a complete combinatorial set, wh
correspond to the admissible real maps. On the other h
the binary expressions of all the patterns cover all the
numbers on the interval@0,1#. These may enrich the lan
guages of symbolic dynamics. The grammatical complex
of the languages of such patterns may be beyond tha
unimodal maps. It provides a new direction for the study
complexity of dynamics. This would be rather interesting

~iii ! Global regularity in the period-doubling and
p-tupling bifurcations.It is well-known that all the quantita
tive universalities, such as Feigenbaum’s metric unive
constants~convergent rates and scaling factors!, fractal di-
mensions or singularity spectra, depend rigorously on
sequences of symbolic dynamics in the topological spaceS2
or S3, equivalently on the parameter values of systems.
the exploration of global regularities independent of
quences or parameters is very important for a thermo
namic formalism of chaotic dynamics in the whole topolo
cal space. Such global regularities in unimodal maps w
found as the global relationship of fractal dimensions
Feigenbaum-type attractors@37# and the devil’s staircase o
topological entropy@30#. Since the algebraic compositio
rule of dual-star products successfully solves the geome
construction of Feigenbaum-type attractors and the struc
of equal topological entropy classes in bimodal maps, we
further discuss such global regularities for bimodal ma
We find that in bimodal maps the global regularity of frac
dimensions has a generalization of similar form in compa
son with unimodal case, while the entropy devil’s stairca
in unimodal maps is generalized to the devil’s carpet@38#.

The paper is organized as follows. In Sec. II, prelimin
ies of symbolic dynamics of bimodal maps are presented,
dual-star products are reviewed, and the self-similar clas
cation of DSS sequences in the kneading plane is
shown. In Sec. III, we study the metric universality of dua
star products. In Sec. IV, the complexity of routes of tran
tions to chaos are discussed. Section V presents a gl
-
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regularity of fractal dimensions independent of DSS
quences. Finally in Sec. VI, we give a short discussion.

II. PRELIMINARIES

A. Symbolic dynamics of three letters for bimodal maps

A bimodalmap of the intervalI is a piecewise monotone
continuous mapf from I to itself with two turning pointsc1
andc2. In this paper we consider the case of121 bimodal
maps of the intervalI 5@c0 ,c3# (c0,c3 ;c0 ,c3PR), i.e.,
maps which are increasing on@c0 ,c1# and @c2 ,c3#, and de-
creasing on@c1 ,c2#. Let L, M, and R be assigned asad-
dressesto the points belonging to the three intervals
monotonicity of f ~for left, middle, and right, respectively!,
and C and D to the two turning points. Theitinerary of a
point xPI , A(x)5a0a1 . . . an . . . , is defined to be the se
quence of addressesanP$L,C,M ,D,R%, such that f n(x)
Pan . The kneading sequences Ki( f )5k0

i k1
i . . . kn

i . . . are
defined to be the itineraries of the extremal pointsf (ci), i
51,2; and thekneading invariantof the mapf to be the
2-tuple „K1( f ),K2( f )… which determine some importan
properties of the map.

Let the symbolic ordera be the Metropolis-Stein-Stein
~MSS! order @5# or equivalently, thelexicographical order
@6#, which is complete@7#. Obviously, the ordering on the
addresses is a natural orderLaCaMaDaR. To induce the
ordering of sequences, we define theparity of a sequenceW
asevenif it contains an even number ofM ’s, andodd oth-
erwise, and aparity operatort(W) by

t~W!5H 11 if W is even

21 if W is odd.

Then, if two distinct sequencesU and V are written asU
5Guk . . . andV5Gvk . . . , with a common leading string
G andukavk :

UaV if t~G!511, VaU if t~G!521.

It is useful to define theshift operatorw, which deletes the
first symbol of the sequence to which it is applied; one th
has wk(W)5wkwk11 . . . for the sequence W
5w0w1 . . . wk . . . . For any two sequencesU and V, if
wk(U)dU, andVdwk(V), for all kPZ1 ~whereZ1 is the
set of positive integers!, thenU is calledmaximal, V mini-
mal, and Sª(U,V) is an extremal pair. A pair S is called
compatibleif wk(V)dU andVdwk(U) for all kPZ1 . If the
compatible pairS further satisfies the condition

Vawk~U !dU, kPZ1 ,
~2.1!

Vdwk8~V!aU, k8PZ1 ,

thenS is calledadmissible. All the admissible pairs form an
admissible setK, they fill up the whole kneading paramete
plane.

To obtain the sets$U% and$V%, we can repeatedly operat
the superorder left-handed multiplication (LaMaR) ^ @39#
on the natural orderLaCaMaDaR. For instance, (L
aMaR) ^ (LaCaMaDaR) generates the following or
dered sequences:
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LLaLCaLMaLDaLR

aMRaMDaMMaMCaML

aRLaRCaRMaRDaRR.

Along with the natural orderLaCaMaDaR, we have the
sequences

LLaLCaLMaLDaLRaC

aMRaMDaMMaMCaMLaD

aRLaRCaRMaRDaRR.

So the operation (LaMaR) ^ n
^ (LaCaMaDaR) will

produce all the sequences$U% and $V% whenn→`,

L`a•••aM`a•••aR`.

Obviously, L`a•••aM` are the sequences of$V%, and
M`a•••aR` that of $U%. The order topological spaceS3
ª$a,A% is defined as the product of sets$U% and$V%, where
the pairsA[(U,V)PK; and the ordera is used in the sens
of the following meaning: for any two admissible sequen
pairs A15(U1 ,V1) and A25(U2 ,V2), A1aA2 if U1aU2,
or if U15U2 andV2aV1.

If U5K1 , V5K2, the kneading pair (K1 ,K2) obviously
satisfies the admissibility condition~2.1!, namely,

K2awk~K1!dK1 , kPZ1 ,
~2.2!

K2dwk8~K2!aK1 , k8PZ1 .

In particular, if the kneading sequencesK1 andK2 are peri-
odic, and they contain both turning pointsC andD, i.e., K1

5XDYC[K, andK25YCXD[K̃, then the pair (K,K̃) is
called theDSS kneading pair, and its admissibility condition
~2.1! is reduced to

YCawk~XD!dXD, for k50,1, . . . ,uXDu21,
~2.3!

YCdwk8~YC!aXD, for k850,1, . . . ,uYCu21,

whereuXDu is the length ofXD and uYCu that of YC. De-
noting by K0 the set of all DSS kneading pairs, then o
obviously hasK0,K.

The DSS kneading pairs are the typical representative
all admissible pairs; they correspond to thejoints of the skel-
eton in the kneading plane, from which the bones~singly
superstable kneading sequences! spanning the kneading
plane grow@13#. Therefore, to study the properties of th
DSS kneading pairs is crucial in analyzing the structure
the kneading plane. In this paper we will mainly concentr
on the DSS kneading pairs (K,K̃).

For a periodic sequenceW, we can introduce apermuta-
tion operation; between its maximal (WM) and minimal
(Wm) representations asW̃M5Wm , W̃m5WM . Obviously,
any DSS kneading pair can be expressed by (K,K̃), with K

5XDYC and K̃5YCXD. When no confusion arises, w
will simply call a DSS kneading pair (K,K̃) a DSS sequence
K, or denote it asXDYC or (XD,YC).
e

of

f
e

B. Composition rule of dual-star products

Let us first review the algebraic composition rule of t
DGP star product@1# in symbolic dynamics of unimoda
maps. LetQC5q1q2 . . . qmC andSC5s1s2 . . . snC denote
two superstable sequences, withqj ,skP$L,R%, then their
DGP star productQC* SC is defined by symbol multiplica-
tion • and parity operationt,

QC* SC5Q~C•s1!t(Q)Q~C•s2!t(Q) . . . Q~C•sn!t(Q)

Q~C•C!t(Q),

with

C•L5C21, C•R5C11, C•C5C0[C.

Here in the unimodal case, the parity operatort(Q) is de-
fined by t(Q)511 if Q contains an even number ofR’s,
and t(Q)521 otherwise, withC215L, C05C, andC11

5R. We can see that the DGP star product concerns
regular disturbance~multiplication and parity operation! of
turning pointC. The DGP star product is a standard or no
mal star product, which has many good algebraic propert
for instance,~i! admissibility; ~ii ! order preservation;~iii !
period-doubling andp-tupling transformations;~iv! entropy
preservation, namely, the first and the second topolog
conjugate transformations@40#, etc. These properties shou
be considered in the generalization of star product.

In symbolic dynamics of bimodal maps, the generaliz
tion of the DGP star product should seek the regular dis
bances of two turning pointsC andD. In the following, we
will frequently be concerned with the replacement in a
quence ofC by L or M, and of D by M or R. We define
C215L, C05C, C115M ; D215M , D05D, and D11

5R. Obviously, C21aCaC11 and D21aDaD11. This
exponential notation will frequently be used in conjuncti
with the parity operation. It is easy to verify thatYC2t(Y)

aYCaYC1t(Y) andXD2t(X)aXDaXD1t(X).
Now we present the definition of the dual-star produ

for the 121 bimodal maps@20,21#. Let Z5XDYC and
W5UDVC[w1w2 . . . wk1 l 12 be two DSS kneading se
quences, where X5x1 . . . xm , Y5y1 . . . yn , U
5u1 . . . uk[w1 . . . wk , V5v1 . . . v l[wk12 . . . wk1 l 11 ,
xz ,yh ,uj ,vrP$L,M ,R%, z51, . . . ,m, h51, . . . ,n, j
51, . . . ,k, and r51, . . . ,l ; obviously, wk115D, wk1 l 12

5C. There are two kinds of star products, i.e.,Z*̄ W and
Z̃* W̃, ; Z,WPK0. Theup-starproduct*̄ is defined as

Z*̄ W5~XDYC! *̄ ~UDVC!

5~XDYC! *̄ u1 . . . ~XDYC! *̄ uk~XDYC! *̄ D

~XDYC! *̄ v1 . . . ~XDYC! *̄ v l~XDYC! *̄ C,

where the up-star product*̄ consists of up-multiplication•̄
and parity operationt,

~XDYC! *̄ a5X~D •̄a!t(X)Y~C•̄a!t(Y),
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aP$L,C,M ,D,R%; ~2.4!

and thedown-starproduct* as

Z̃* W̃5~YCXD!* ~VCUD!

5~YCXD!* v1 . . . ~YCXD!* v l~YCXD!* C

~YCXD!* u1 . . . ~YCXD!* uk~YCXD!* D,

where the down-star product* consists of down-
multiplication • and parity operationt,

~YCXD!* a5Y~C•a!t(Y)X~D•a!t(X),

aP$L,C,M ,D,R%. ~2.5!

Table I is the dual-star multiplication table, which lists th
results ofD(C) •̄a and C(D)•a. For an arbitrary DSS se
quenceXDYC, its period-doubling transformations are ju
the products (XDYC)*̄ (DC) and (YCXD)* (CD) which
coincide with the operationsl andr defined by MacKay and
Tresser@14#, and its period-p-tupling transformations are th
products (XDYC)*̄ (UDVC) and (YCXD)* (VCUD),
where basic periodp5uUDu1uVCu. For example, one can
easily obtain the four 332 DSS sequences

DLC*̄ DC5DLLMLC, RDC*̄ DC5RDLRMC,

LCD* CD5LCRLMD, CRD* CD5CRRMRD,

and four 233 DSS sequences

DC*̄ DLC5DLMMMC, DC*̄ RDC5RLDLMC,

CD* LCD5LRCRMD, CD* CRD5CRMMMD.

Just as the DGP star product, the up- and down-star p
uctsZ*̄ W andZ̃* W̃ are admissiblecompoundDSS kneading
sequences@20#, and have the following good algebraic pro
erties,; Z,W,SPK0 andZÞW.

~i! Noncommutativity:Z*̄ WÞW*̄ Z, Z̃* W̃ÞW̃* Z̃.
~ii ! Associativity: Z*̄ (W*̄ S)5(Z*̄ W)*̄ S, Z̃* (W̃* S̃)

5(Z̃* W̃)* S̃.

~iii ! Order preservation:WaS⇒Z*̄ WaZ*̄ S, Z̃* W̃̃

aZ̃* S̃̃.
~iv! Kneading admissibility preservation:Z,WPK0

⇒Z*̄ W,Z̃* W̃PK0.

TABLE I. Multiplication table of up- and down-star product
for the case (121).

a D •̄a C•̄a C•a D•a

L D21 C11 C21 D11

C D21 C0 C0 D11

M D21 C21 C11 D11

D D0 C21 C11 D0

R D11 C21 C11 D21
d-

~v! Duality: Z*̄ W5@(Z)T* (W)T#T, Z̃* W̃

5@(Z̃)T*̄ (W̃)T#T where theparity preservation transforma-
tion T is defined as

R
L, D
C, M
M .

Therefore, these two star products possess dual symm
under the parity preservation transformationT, and are thus
calleddual-starproducts.

According to the stipulation at the end of Sec. II A, th
definitions in Eqs.~2.4! and ~2.5! really represent the com
pound DSS kneading pairs. We will concisely denote th

asZ*̄ W[(Z*̄ W,Z*̄ W̃), andZ* W[(Z̃* W̃̃,Z̃* W̃).

C. Word-lifting technique: Parametrization of DSS sequence

There exists a correspondence between a DSS sequ
and a point in the kneading parameter plane. The wo
lifting technique@9# provides a method to determine theloci
of DSS sequences in the parameter plane.

Consider an arbitrary DSS sequenceW5UDVC, where
U5u1u2 . . . uk , V5v1v2 . . . v l , andui ,v jP$L,M ,R%. Let
xC5c1 andxD5c2 be the coordinates of the turning pointsC
and D of the bimodal mapy5 f l,m(x); then a system of
equations can be obtained:

f ~xC!5 f u1

21+ f u2

21+•••+ f uk

21~xD!,

f ~xD!5 f v1

21+ f v2

21+•••+ f v l

21~xC!. ~2.6!

Equation~2.6! determines an isolated point~i.e., joint! in the
kneading parameter plane.

In this paper, we will mainly employ the two-paramet
cubic map

f r ,s~x!5r 1s~4x323x! ~2.7!

as the actual metric model of bimodal mapsf l,m ; its turning
points arexC52 1

2 andxD5 1
2 . In f r ,s(x), T3(x)54x323x

5cos(3 arccosx) is just the Chebyshev polynomial, so th
inverse functions of Eq.~2.7! can be easily found as follows

f L
21~y!5cosS 1

3
arccos

y2r

s
1

2p

3 D ,

f M
21~y!5cosS 1

3
arccos

y2r

s
2

2p

3 D , ~2.8!

f R
21~y!5cosS 1

3
arccos

y2r

s D .

By use of Eq.~2.8!, from Eq.~2.6! the values of parameter
(r ,s) of a DSS sequence for map~2.7! can be solved. If one
considers the standard cubic map

f a,b~x!5a1~12b!x2ax21bx3, ~2.9!

the case will be similar. Because there is only a linear tra
formation between Eqs.~2.7! and~2.9!, one can easily obtain
parameters (a,b) from (r ,s).
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D. Periodic window, window band,
and equal topological entropy class

For an arbitrary DSS kneading pairZ5(XDYC,YCXD),
the kneading sequenceKC5XDYC has its upper and lowe
sequences denoted as

KC
15XD1t(X)YC, KC

25XD2t(X)YC.

Similarly, the kneading sequenceKD5YCXD has its upper
and lower sequences as

KD
15YC1t(Y)XD, KD

25YC2t(Y)XD.

These four singly superstable sequencesKC
6 and KD

6 form
thebasicperiodic windows ofZ; they are what MacKay and
Tresser called thebones@13#. The basic windows can b
further divided into theinternal andexternalwindows. The
internal window ofKC refers to

~KC
1!25XD1t(X)YC2t(Y)

and

~KC
2!15XD2t(X)YC2t(Y),

and the external window ofKC to

~KC
1!15XD1t(X)YC1t(Y)

and

~KC
2!25XD2t(X)YC1t(Y);

similarly, the internal window ofKD refers to

~KD
1!25YC1t(Y)XD1t(X)

and

~KD
2!15YC2t(Y)XD1t(X),

and the external window ofKD to

~KD
1!15YC1t(Y)XD2t(X)

and

~KD
2!25YC2t(Y)XD2t(X).

Obviously, (KC
1)2 merges with (KD

2)1, (KC
2)1 with

(KD
2)2, (KC

1)1 with (KD
1)2, and (KC

2)2 with (KD
1)1.

The window bandof Z refers to the total of the window
of Z and all the associated PDB sequencesZ* (DC)* n with

* P$ *̄ ,* % andn51,2, . . . .Their windows are connected i
the kneading plane, which can be deduced from the fact
Z, Z*̄ (DC) and Z* (DC) have connected windows: the in
ternal window sequenceXD2t(X)YC2t(Y) of Z merges with
the external one XD2t(X)YC2t(Y)XD2t(X)YC2t(Y) of
Z*̄ (DC), and the external oneXD1t(X)YC1t(Y) of Z with
the internal one XD1t(X)YC1t(Y)XD1t(X)YC1t(Y) of
Z* (DC). To describe the window band ofZ, we only choose
at

the DSS sequences in the window band as representativ
simplicity, and use the notation ZWB
5ø* P$* ,̄* %,n>0Z* (DC)* n.

It has been proved that dual-star products have the p
erty of preserving topological entropy, namely, forZPK0
andAPK one has@20#

h~Z* A!5H h~Z! if ZÞ~DC!* n,

1

2n
h~A! if Z5~DC!* n,

~2.10a!

and

h„~DC!* n
…50. ~2.10b!

Therefore, similar to the case of unimodal maps@30–34#, an
equal topological entropy class~ETEC! can be formed by
dual-star products asHZ5Z* K, which exhibits as aplateau
with a constant topological entropyh(Z) in the space
(h,l,m) @21#. The ETEC is a contraction formed by th
dual-star mapZ* which compresses all phenomena occ
ring in the whole kneading plane to an ETEC platea
Feigenbaum’s metric universality@2–4# is confined within an
ETEC plateau. There exist infinitely many plateaus with c
dinal number 2:0 above the whole kneading plane. The
projections to the kneading plane construct a multifrac
with a positive measure, i.e., a devil’s carpet of topologi
entropy~a Sierpinski-like carpet!. We will discuss the fractal
characteristics of ETECs elsewhere@38#.

Obviously, the zero topological entropy class is the se
the PDB sequences,H05ø* P$* ,̄* %,n>1(DC)* n, and the
window bandZWB is a part~subset! of the ETECHZ of Z,
namely, the compression of the zero topological entro
classH0 in HZ . It should be indicated that besides the fir
topological conjugate transformation~2.10!, there also exists
a second topological conjugate transformation for dual-s
products@41#, just as the case for the DGP star product@40#.

E. Self-similar structure of kneading plane

The kneading plane of bimodal maps has a perfect s
similarity that can be shown by the dual-star products.
Fig. 1~a! we present a classification for thebasic periodic
and quasiperiodic sequences in the kneading plane accor
to the structural similarity of the sequences. The knead
plane can be divided into two main regions: the PDB reg
VPDB with zero topological entropy, and the chaotic regi
Vc with positive topological entropy. The chaotic regionVc
can be further divided into a series of subregionsVm (m
50,1,2, . . . ), namely,Vc5øm50

` Vm ; the set of thebasic
periodic and quasiperiodic sequences corresponding to
subregionVm is denoted as̀ m . Here the word ‘‘basic’’
means that we do not include the associated PDB seque
Z* (DC)* n (ZP`m ,n>1) in each subregionVm .

Let Kp denote the set of all theprimitive DSS sequences
that cannot be decomposed by the composition rule of d
star products. All these primitive sequences locate in the s
region V0, namely, Kp,K0. Besides the primitive se
quences, there also exist the compound sequence
the form Zk* (DC)* n1* •••* Zk* (DC)* nk* Zk11 (Zk

PKp ;* P$ *̄ ,* %, k>1, nkPZ1) in V0, thus
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FIG. 1. ~a! Schematic diagram for the self
similar classification of the basic sequences in t
kneading plane. Only subregionsV0 and V1

5V1
l øV1

r are displayed for convenience. Th
black circles represent some special joints; th
correspond to the period-2 DSS sequenceDC,
two period-3 DSS sequences (DLC and RDC),
and two 232, four 332, and four 233 com-
pound DSS sequences. The curvesAlBl̃ andArBr̃

indicate the boundary of topological chaos pr
sented by the accumulation points of dual PD
products (DC)* `. ~b! The enlargement of the
shaded regions in~a! that reveals the complexity
of the PDB routes to chaos.
s

rm
in

s.
s in
`05$Z,Z1* ~DC!* n1* •••* Zk* ~DC!* nk* Zk11uZ,Zk

PKp ;k>1, nkPZ1%. ~2.11!

Obviously, the various possible combinations, such asZ* j ,
Z1

* j 1* (DC)* n1* . . . * Zk
* j k , etc., are included in`0. It

should be indicated that there exist three types of DSS
quences iǹ 0; that is, we can dividè 0 into three subsets:

`05`0
l ø`0

cø`0
r .

Here `0
c is the set of symmetrical sequences of the fo

XDXTC or YTDYC; these symmetrical sequences locate
the central lineKC5KD @i.e., (D,C)→(R`,L`)# in the
kneading plane. Whilè 0

l and`0
r are two mirror-image sets

symmetrical to the central lineKC5KD , i.e., if Z5XDYC

P`0
l , thenZ̃T5YTDXTCP`0

r .
For the subregionV15V1

l øV1
r , we have
e-

`15~DC! *̄ `0ø~DC!* `0 , ~2.12!

where (DC)*̄ `0[`1
l and (DC)* `0[`1

r are two mirror-
image sets symmetrical to the central lineKC5KD in V1;
they locate in two small subregionsV1

l 5(DC)*̄ V0 and

V1
r 5(DC)* V0, respectively. Obviously, (DC)*̄ (XDYC)

and (DC)* (YTDXTC) are a pair of mirror-image sequence
It is noted that there do not exist symmetrical sequence
`1, i.e.,

`15`1
l ø`1

r , `1
c5B.

Similarly, for any other subregionsVm5Vm
l øVm

r

[(ø j 51
2m21

Vm, j
l )ø(øk51

2m21
Vm,k

r ) consisting of 2m small sub-
regions withm.1, we have

`m5~DC! *̄ `m21ø~DC!* `m215 ø

* P$* ,̄* %

~DC!* m* `0

~2.13!
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and

`m5`m
l ø`m

r , `m
c 5B.

Therefore, the set of all the basic DSS sequences in the
otic regionVc is

`c5 ø
m50

`

`m . ~2.14!

The structure of each subregionVm in the chaotic region
Vc is completely similar. FromVm21 to Vm , the number of
small subregions is doubled. The differences betweenVm

and Vm21 are in fact only contraction maps (DC)*̄ and
(DC)* ; that is, we haveVm

l 5(DC)*̄ Vm21 and Vm
r

5(DC)* Vm21 corresponding to`m
l 5(DC)*̄ `m21 and

`m
r 5(DC)* `m21, respectively. Under the permutation o

eration; and the parity preservation transformationT, there
exists a dual symmetry betweeǹm

l and`m
r .

III. METRIC UNIVERSALITY OF DUAL-STAR PRODUCTS

A. Definitions of metric universal constants

1. Convergent ratesd

For a bimodal mapf l,m , consider the dual-star produc
(XDYC)* n, * P$ *̄ ,* %, of basic periodp5uXDu1uYCu, and
let
c-

a

t

ve
fo
a-

lnP$l̄n[l„~XDYC!*
¯n
…, ln[l„~XDYC!* n

…%,

mnP$m̄n[m„~XDYC!*
¯n
…, mn[m„~XDYC!* n

…%

denote their parameter values, then we can define at l
three convergent rates,

dl;n5
ln212ln22

ln2ln21
, ~3.1a!

dm;n5
mn212mn22

mn2mn21
, ~3.1b!

dl,m;n5
dl,m;(n22,n21)

dl,m;(n21,n)
, ~3.1c!

wheredl,m;(n21,n) is the Euclidean distance between poin
(ln21 ,mn21) and (ln ,mn) in the kneading parameter plan
dl;nP$d̄l;n ,dl;n%, dm;nP$d̄m;n ,dm;n%, and dl,m;n

P$d̄l,m;n ,dl,m;n% describe theasymptoticprocesses of con
vergence along thel direction, them direction and the con-
vergent curve@or convergent points (ln ,mn)# in the knead-
ing parameter plane, respectively. Any one of them c
describe the asymptotic process of convergence, becaud
5 limn→`dl;n5 limn→`dm;n5 limn→`dl,m;n . In fact, dl,m;n
can also be understood as the ratio of areas of the adja
trapezoids, namely,
dl,m;n5
~ln211ln22!~mn212mn22!

~ln1ln21!~mn2mn21!
or

~ln211ln2222l1!~mn212mn22!

~ln1ln2122l1!~mn2mn21!
, ~3.1d!

which takel50 andl5l1 as the reference lines, respectively; or

dl,m;n5
~ln212ln22!~mn211mn22!

~ln2ln21!~mn1mn21!
or

~ln212ln22!~mn211mn2222m1!

~ln2ln21!~mn1mn2122m1!
, ~3.1e!
f
y two

-
h

f

which takem50 andm5m1 as the reference lines, respe
tively.

In practice, we employ the two-parameter cubic m
f r ,s(x) in Eq. ~2.7! as the actual metric model off l,m to
define and computed r ;n , ds;n , andd r ,s;n . We can also simi-
larly define and computeda;n , db;n , andda,b;n for the stan-
dard cubic mapf a,b(x) in Eq. ~2.9!. The results show tha
whether the cubic maps aref r ,s(x) or f a,b(x), so long as the
bimodal maps considered are of cubic extrema the con
gent rate for the same DSS sequence is the same. There
it is a metric universality; we have given the values ofd for
DSS sequences of basic periodp52 –4 in Ref.@21#.

2. Scaling factorsa

Let f (n) denote the map corresponding to (XDYC)* n,
xC;n andxD;n the coordinates of the turning points off (n) ,
and p5uXDu1uYCu the basic period of (XDYC)* n and *
P$ *̄ ,* %. In noting that f (n)

pn21
(xC;n) is the nearest point to
p

r-
re,

xC;n , and f (n)
pn21

(xD;n) that toxD;n , the scaling properties o
a DSS sequence in the phase space can be described b
scaling factorsaC andaD . Here we only give the definition
of aC :

aC;n5
f (n21)

pn22
~xC;n21!2xC;n21

f (n)
pn21

~xC;n!2xC;n

, ~3.2!

the definition ofaD can be similarly obtained with replace
ment of C by D in Eq. ~3.2!. Generally speaking, for eac
DSS sequenceZ5XDYC, there exist two pairs ofasymp-

totically convergentscaling factors:$āC ,āD% for up-star
productZ*

¯n, and$aC ,aD% for down-star productZ* n with
n→`. The numerical results show again that bothaC and
aD are universal for eitherf r ,s(x) in Eq. ~2.7! or f a,b(x) in
Eq. ~2.9!. The values of$aC ,aD% for DSS sequences o
basic periodp52 –4 were computed in Ref.@21#.
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It should be indicated that Chang, Wortis, and Wrig
@11# studied the iterative properties of a trimodal quartic m
early on. They found that the tricritical behavior of doub
stable 2n cycles is characterized by the universal numb
dT57.28469,aT521.69030, andaT

252.85713. This early
result coincides with the special case ofp52 in bimodal
maps.

B. Dual symmetry of metric universal constants

Just asZ and Z̃T have dual symmetry~i.e., they are sym-
metrical to the central lineKC5KD in the kneading plane!,
the metric universal constants also have a perfect dual s
metry:

d̄~Z!5d~ Z̃T!, ~3.3!

āC~Z!5aD~ Z̃T!, āD~Z!5aC~ Z̃T!. ~3.4!

This has been verified by numerical calculation. Thus it
enough to show only the numerical results of up-star pr
ucts. For example, we have

d̄~DLLC!5d~RRDC!51275.1,

d̄~RRDC!5d~DLLC!532.187.

āC~DLLC!5aD~RRDC!526.1918,

āD~DLLC!5aC~RRDC!538.338,

āC~RRDC!5aD~DLLC!526.2185,

āD~RRDC!5aC~DLLC!57.1805.

Furthermore, for two special types of products (DYC)*
¯n and

(XDC)* n that locate in two straight lines (D,C)→(D,L`)
and (D,C)→(R`,C), respectively, in the kneading plan
@see Fig. 1~a!#, we have in general,

@āC~DYC!#25āD~DYC!,

@aD~XDC!#25aC~XDC!.

This can be seen from the above examples.
For the concrete mapf r ,s(x), duality leads to the exac

symmetry in the kneading plane, i.e.,

r̄ ~Z*
¯n!52r „~ Z̃T!* n

…, s̄~Z*
¯n!5s„~ Z̃T!* n

….

For the above examples, we have

r̄ n~DLLC!52r n~RRDC!, s̄n~DLLC!5sn~RRDC!;

r̄ n~RRDC!52r n~DLLC!, s̄n~RRDC!5sn~DLLC!.

Thus the route of convergence ofZ*
¯n is completely sym-

metrical to that of (Z̃T)* n.
From the above, we can see that for each DSS sequ

Z5XDYC of period p5uXDu1uYCu, there exist a pair of
convergent rates$d̄,d% and two pairs of scaling factor
t
p

s

-

s
-

ce

$āC ,āD% and$aC ,aD%, which describe the different conver
gent and scaling behaviors of the dual-star products.
up-star productZ*

¯n and down-star productZ* n exhibit dif-
ferent bifurcation structures; they locate along different
rections in the kneading plane, and are also different in
phase space. Therefore we can call them the dual PpTBs,
i.e., up PpTB and down PpTB, respectively. The bifurcation
diagram should be a very complicated picture in the thr
dimensional space (r ,s,x). The global bifurcation structure
is perfectly mirror symmetrical to the central lineKC5KD in
the kneading plane due to the dual symmetry of the unive
constants.

C. Metric universality of regularly mixed dual-star products

Now we investigate the metric universality ofregularly
mixed dual-star products. The regularly mixed dual-s
products can be formed in the following ways.

~i! Given an arbitrary primitive DSS sequenceZ, we can
construct infinitely manynew compound DSS sequences
the form

Zcom5Z*
¯n1* Z* n2*̄ Z*

¯n3* Z* n4*̄ * ••• *̄ Z*
¯nk21* Z* nk,

~3.5!

where eachnj ( j P$1,2, . . . ,k%) is a finite nonnegative inte-
ger. For each Zcom with a set of fixed values

$n1 ,n2 , . . . ,nk%, the products (Zcom)*
¯n and (Zcom)* n, with

n51,2, . . . ,̀ , will lead to a pair of convergent rate

$d̄(Zcom),d(Zcom)% and two pairs of scaling factor

$āC(Zcom),āD(Zcom)% and$aC(Zcom),aD(Zcom)%.
~ii ! Given a series ofdistinct primitive DSS sequence

Z1 ,Z2 , . . . ,Zk , we can also construct infinitely many com
pound DSS sequences of the form

Zcom5Z1
*
¯n1* Z2

* n2*̄ Z3
*
¯n3* Z4

* n4*̄ * ••• *̄ Zk21
*
¯nk21* Zk

* nk .
~3.6!

Similarly, for each suchZcom in Eq. ~3.6! with a set of fixed
values$n1 ,n2 , . . . ,nk%, there also exist a pair of converge
rates $d̄(Zcom),d(Zcom)% and two pairs of scaling factor

$āC(Zcom),āD(Zcom)% and $aC(Z com),aD(Zcom)%. In fact,
Eq. ~3.6! is a general form, while Eq.~3.5! is its special case
by settingZ15Z25 . . . 5Zk[Z.

In Table II, we list some numerical results of univers
constants of compound DSS sequences, which verify
above conclusions. In this table, (DC* DC)* n locate in the
PDB regionVPDB, (DLC* DC)* n and (RDC* DC)* n in
the subregion V0 of the chaotic region Vc , and
(DC* DLC)* n and (DC* RDC)* n in the subregionV1 of
Vc @see also Fig. 1~a! for reference#. We can see tha
d̄(DLMC)5 d̄„(DC)*

¯2
…5@ d̄(DC)#2 and d(RMDC)

5d„(DC)* 2
…5@d(DC)#2, it can be extended to

d̄~Z*
¯k!5@ d̄~Z!#k, d~Z* k!5@d~Z!#k; ~3.7!

this is similar tod„(WC)* k
…5@d(WC)#k for superstable pe-

riodic sequences in the unimodal case. Meanwhile, we h
āC(DLMC)5āC„(DC)*

¯2
…5@āC(DC)#2 and āD(DLMC)
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TABLE II. Universal constants with dual symmetry for some compound DSS sequences for the
map.

Z d̄(Z) āC(Z) āD(Z) d(Z) aC(Z) aD(Z)

(DC)*
¯2 53.067 2.8571 8.1632 14.599 24.8627 24.8627

(DC)* 2 14.599 24.8627 24.8627 53.067 8.1632 2.8571

DLC*̄ DC 465 4.94 24.4 46.0 27.88 212.3

DLC* DC 46.0 28.51 213.3 46.0 17.0 6.66

RDC*̄ DC 46.0 6.66 17.0 46.0 213.3 28.51

RDC* DC 46.0 212.3 27.88 465 24.4 4.94

DC*̄ DLC 465 4.94 24.4 46.0 28.51 213.3

DC* DLC 46.0 27.88 212.3 46.0 17.0 6.66

DC*̄ RDC 46.0 6.66 17.0 46.0 212.3 27.88

DC* RDC 46.0 213.3 28.51 465 24.4 4.94
lt
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5āD„(DC)*
¯2
…5@āD(DC)#2; this leads to a general resu

for the compound DSS sequences:

āC~Z*
¯k!5@āC~Z!#k, āD~Z*

¯k!5@āD~Z!#k,
~3.8!

aD~Z* k!5@aD~Z!#k, aC~Z* k!5@aC~Z!#k,

which is also similar toa„(WC)* k
…5@a(WC)#k for super-

stable periodic sequences in the unimodal case. H
ever, for the mixed dual-star products composed
distinct DSS sequences, say, (Z1* Z2)* n, the approxi-
mate relationsd(Z1* Z2)'d(Z1)d(Z2) and aC,D(Z1* Z2)
'aC,D(Z1)aC,D(Z2) are not satisfactory in accuracy.

It should be emphasized that, in Eq.~3.6!, if a certainnj
>3 ( j P$1,2, . . . ,k%), then one will observe thelocal con-
vergent behavior described byd̄nj

(Zj ) or dnj
(Zj ) depending

on whetherZj
* nj is up-star productZj

*
¯nj or down-star prod-

uct Zj
* nj ; Similarly, if nj>2, one will see thelocal scaling

behavior described by $āC;nj
(Zj ),āD;nj

(Zj )% or

$aC;nj
(Zj ),aD;nj

(Zj )%. However, these local convergent an

scaling behaviors areapproximatebecausenj is finite, while
exactconvergent and scaling behaviors@d(Zj ), aC(Zj ), and
aD(Zj )] can only be approached byZj

* nj with the limit nj

→`.
Of course, the associated PDB sequencesZ* (DC)*

¯n and
Z* (DC)* n, with n51,2, . . . ,̀ , in the window band, keep
the universal constants d̄(DC)5d(DC), āC(DC)
5aD(DC), and āD(DC)5aC(DC). Similarly, the associ-

ated PpTB sequencesZ1* Z2*
¯n and Z1* Z2*

n keep the uni-

versal constants $d̄(Z2),āC(Z2),āD(Z2)% and
$d(Z2),aC(Z2),aD(Z2)%, respectively.

IV. COMPLEXITY OF ROUTES
OF TRANSITIONS TO CHAOS

A. Combinatorial complexity of patterns of dual-star products

Before discussing the routes of transitions to chaos,
will introduce the patterns of dual-star products which c
help us understand the combinatorial complexity of dual-s
-
f

e
n
r

products. Here we will mainly focus on the sel
combinations of a primitive DSS sequence.

Let the symbol 0 denote the up-star operation*̄ , and 1 the
down-star operation* . For an arbitrary primitive DSS se
quenceZ, we define thepatternof its dual-star product of a
finite powerk:

Z* k5Z* Z* •••* Z, * P$ *̄ ,* %, ~4.1a!

where there arek21 operations, to be

s$k%5s1s2•••sk21 , s jP$0,1%. ~4.1b!

Thus we can transfer the study of various dual-star produ
to that of patterns.

In such a way, Eq.~3.5! can be described by the followin
pattern:

s$n1 ,n2 , . . . ,nk%[s1s2•••sn11n21•••1nk21

50 . . . 01 . . . 10 . . . 10 . . . 01 . . . 1,

~4.2!

where there aren121 zeros,n2 ones, . . . , followed bynk21
zeros andnk ones. If n150, we stipulate that the abov
pattern should be written as

s$n2 , . . . ,nk%5s1s2 . . . sn21•••1nk21

51 . . . 10 . . . 10 . . . 01 . . . 1,

which represents the productZ* n2*̄ * ••• *̄ Z*
¯nk21* Z* nk, and

where there aren221 ones, andnk21 zeros, followed bynk
ones.

Obviously, a periodic pattern, i.e., an infinitely repeati
pattern of a finite strings1s2•••sk21sk ,

s1s2 . . . sk21sk[~s1s2 . . . sk21sk!
`, ~4.3!

can describe an accumulation point of a regularly mix
dual-star product, i.e., (Z* k)* `. The last symbolsk denotes
the type of combinations of the repeatingbasic block Z* k.
For example, if sk50, then s1s2 . . . sk210 represents
(Z* k)*

¯`. It can also be easily deduced that an eventua
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periodic patterns1s2 . . . smsm11sm12 . . . sm1k with a
fixed finite non-negative integerm corresponds to an assoc
ated bifurcationZ* m* (Z* k)* `.

If we assign a patterns with a binary number 0.s, then
any one of the real numbers on@0,1# in a binary system
corresponds to a possible pattern of mixed dual-star p
ucts. Obviously, 0.0̄50.000 . . . corresponds to the pure up
star productZ*

¯`, and 1.0̄[0.1̄50.111 . . . to the pure
down-star productZ* `. Further, we should indicate that
rational number on@0,1# ~i.e., a fractional number! corre-
sponds to a periodic or eventually periodic pattern, and
irrational number to an infinite nonperiodic pattern whi
can describe an irregularly mixed dual-star product. We h
known that there are uncountably infinitely many real nu
bers on the interval@0,1# which possess the cardinal numb
of the continuum, so there also exist uncountably infinit
many patterns for the mixed dual-star products. From
above we can see that the combinatorial complexity of du
star products embodies in the following aspects.

~i! For a concrete primitive DSS sequenceZ, there are an
infinite number of patterns; these patterns can correspon
an infinite number of regularly and irregularly mixed dua
star products ofZ. Furthermore, sinceZ can be taken from
the set Kp of all the infinitely many primitive DSS se-
quences, therefore, for a concrete pattern, there are als
infinite number of dual-star products to be corresponded,
can be attained by takingZ over the setKp for such a pat-
tern. Thus the patterns have a twofold combinatorial co
plexity.

~ii ! If going beyond the self-combinations of a primitiv
sequence, then for an arbitrary patterns5s1s2 . . . sk . . . ,
the corresponding sequences~sayZj andZj 11) lying before
and after the symbols j in the pattern can be different, thi
complicates the combinatorial types of dual-star produ
much more than the case~i!, because eachZj can take over
the setKp ,ZjPKp , j PZ1 .

Now we have known that patterns are closely related
dual-star products: each patterns corresponds to a binar
number 0.s, and it can also correspond to the infinitely ma
dual-star products from either case~i! or case~ii !. Therefore,
the infinitely many patterns make the combinations of du
star products extremely complicated.

B. Regular universal scaling routes: Preservation
of Feigenbaum’s metric universality

In this subsection, we discuss theregular routes of tran-
sitions to chaos in bimodal maps. The PDB and PpTB are
two types of bifurcation routes. Using the concept of patt
defined above, we can show the characteristics of these r
lar routes easily.

The PDB’s are described by the dual-star produ
(DC)* n, * P$ *̄ ,* %, n51,2, . . . ,̀ . A pattern s related to
the PDB routes must be infinite associated with takingZ as
the period-2 DSS sequenceDC. If this infinite patterns is
periodic, that is, it has an infinitely repeating byte as in E
~4.3!, we refer to this as a regular PDB route, which cor
sponds to a rational number on@0,1#. Obviously,s50̄ and
s51̄ correspond to thepure up-starproduct (DC)*

¯` and
pure down-starproduct (DC)* `, they provide two pure and
d-
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regular routes of transitions to chaos, which are structur
universal and have metric universal convergent ra
d̄(DC)5d(DC), and scaling factorsāC(DC)5aD(DC)
and āD(DC)5aC(DC).

In general, according to Eqs.~4.2! and ~4.3!, an arbitrary
regular route of transition to chaos can be described by
periodic pattern

s1s2 . . . sn11n21•••1nk21sn11n21•••1nk
, ~4.4!

where eachnj ( j P$1,2, . . . ,k%) is a finite nonnegative inte-
ger. This is equivalent to the following construction. Firs
for each regular combination~i.e., a set ofnj values or a set
of s1s2•••sn11n21•••1nk21), there exists a repeating byt
that can be constructed by the compound PDB sequence
the form of Eq.~3.5!, namely,

Z$DC%5~DC!*
¯n1* ~DC!* n2*̄ ~DC!*

¯n3* ~DC!* n4 ,

*̄ * ••• *̄ ~DC!*
¯nk21* ~DC!* nk. ~4.5!

Second, the last symbolsn11n21•••1nk
in Eq. ~4.4!

indicates the combinatorial type of the repeatingbasic
block Z$DC% in (Z$DC%)*

`. Therefore, pattern ~4.4!
or (Z$DC%)*

`(* : *̄ or * ) presents a regular route of transitio
to chaos, which is structurally universal and preserv
Feigenbaum’s metric universality, i.e., there exist the me
universal constantsd(Z$DC%), aC(Z$DC%), and aD(Z$DC%)
of the compound PDB sequenceZ$DC% @see,
e.g., Table II for „(DC)* (DC)…*

¯n5(RMDC)*
¯n#. Here,

we omit the discussion for another kind of regul
routes, namely, the eventually periodic patte
s1s2 . . . smsm11sm12 . . . sm1n11n21•••1nk

with a fixed
finite non-negative integerm, since it corresponds to the as
sociated bifurcation (DC)* m* (Z$DC%)*

` with the same met-
ric universal constants as Eq.~4.5!. All the regular routes are
~countably! infinitely many.

It should be indicated that these infinitely manyregular
universal scaling routesof transitions to chaos are extreme
similar to that in the Feigenbaum scenario of the unimo
maps; they are of zero topological entropy from Eq.~2.10b!,
and have metric universal constants. Each of them is c
nected because they belong to the window band sequen

By using the same pattern~4.4! while replacingDC by
XDYC of periodp5uXDu1uYCu>3 in the above construc
tions in Eq.~4.5!, each period-p DSS sequenceXDYC will
lead to ~countably! infinitely many regular PpTB routes in
the chaotic regionVc described by (Z$XDYC%)*

`. These
PpTB routes preserve the topological entropy ofXDYC, i.e.,
h„(Z$XDYC%)*

n
…5h(Z$XDYC%)5h(XDYC). In addition, the

window of (XDYC)* n and that of (XDYC)* (n11) @and of
course, that of (Z$XDYC%)*

n and that of (Z$XDYC%)*
(n11)# are

disconnected, there exist both periodic and chaotic behav
between their windows.

C. Irregular universal nonscaling routes:
Breaking of Feigenbaum’s metric universality

Besides the regular routes discussed above, we k
from Sec. IV A that there also exist infinitely manyirregular
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universal nonscaling routesof transitions to chaos, and eac
of them is structurally universal but not metrically univers
An irregular route must have an infinite nonperiodic patte
that corresponds to an irrational number on@0,1#. Such a
pattern can be called an infinite random pattern which
plies that each symbols j in the pattern is randomly take
from $0,1%; that is,* is randomly taken from$ *̄ ,* %, and the
corresponding dual-star products areirregularly mixed. In
this case, the irregular PDB routes can generally be descr
by

~DC!*
¯n1* ~DC!* n2*̄ ~DC!*

¯n3* ~DC!* n4*̄ * . . . ,
~4.6!

wherenk (k51,2, . . . ) cantake arbitrary non-negative in-
tegers to combinen11n21n31n41•••→`, and the se-
quence of numbers$n1 ,n2 , . . . ,nk , . . . % should be irregu-
lar. Obviously, there will be~uncountably! infinitely many
combinatorial types or patterns with cardinal number 2:0.
These infinitely many irregularly mixed dual PDB’s are
zero entropy from Eq.~2.10b!, and they are mutually con
nected according to Sec. II D. In the topological sense
monotone equivalence class of various maps, we know
an arbitrary DSS sequence possesses structural univers
that is, a symbolic sequence can describe the same topo
cal behavior for different bimodal maps. Thus the mix
dual-star products~either regular or irregular! have the struc-
tural universality. However, when the combinatio
(DC)* n5(DC)* (n21)* (DC) of up- and down-star product
are random, taking the limitn→`, we can see explicitly
from the numerical verifications thatdn , aC;n , andaD;n of
irregularly mixed dual PDB’s do not exhibitdefiniteasymp-
totically convergent behavior although there may exist so
approximate local convergent behaviors; that is, Feige
baum’s metric universality is broken@21#.

Still, by replacingDC by XDYC of period p>3 in the
above constructions in Eq.~4.6!, we have~uncountably! in-
finitely many irregular PpTB routes in the chaotic region
Vc , with nonzero topological entropy and disconnected w
dows. These irregularly mixed PpTB routes also do not ex
hibit the definite asymptotically universal convergent ra
and scaling factors~cf. Table III!.

From the above we can see that all the infinitely ma
generalized Feigenbaum’s routes of transitions to chaos
created by combinations of up- and down-star produ

TABLE III. A numerical example of theirregularly mixed
period-tripling dual star product (DLC)* n for the mapf r ,s(x).

n Sequence (DLC)* n aC;n aD;n d r ,s;n ^d&n

1 (DLC)
2 (DLC)* (n21)* (DLC) 6.6686 225.412
3 (DLC)* (n21)* (DLC) 5.3078 23.8819 16.188 16.188
4 (DLC)* (n21)*̄ (DLC) 24.3592 1.9098 23.726 19.95

5 (DLC)* (n21)* (DLC) 3.5814 219.377 6.0743 15.329
6 (DLC)* (n21)* (DLC) 5.0531 24.0157 16.219 15.552
7 (DLC)* (n21)*̄ (DLC) 24.3044 1.9085 24.494 17.34

8 (DLC)* (n21)*̄ (DLC) 23.2655 9.7158 95.831 30.42

9 (DLC)* (n21)*̄ (DLC) 23.1489 9.8350 83.129 37.95
.
n
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which are all structurally universal. However, these rou
belong to two distinctive types: the regular ones poss
Feigenbaum’s asymptotic metric universality, and the irre
lar ones do not. The regular routes are related to an infi
number of periodic or eventually periodic patterns whi
correspond to countably infinitely many rational numbers
@0,1#, and the irregular routes are related to an infinite nu
ber of nonperiodic random patterns which correspond to
countably infinitely many irrational numbers on@0,1#. This
presents a picture of complexity: the irregular routes wo
be complicatedly mingled with the regular ones in t
presentdual bifurcation scenario. The set of infinitely many
accumulation points of the regular~universal scaling! and
irregular ~universal nonscaling! dual PDB’s forms a fractal
curve, which is just what MacKay and Tresser called t
boundary of topological chaos@14# ~cf. Fig. 1!. From the
computability theory of numbers, we know that the nonco
putable random numbers in a binary system are almost fu
the real line of@0,1#. Therefore, thestructurally universal
nonscaling routesof transitions to chaos which possess
positive measure deserve much attention in the practical
namical systems with more than one parameter.

D. Exploration of characterization of the irregular routes

We now make an exploration for describing the char
terization of convergence of the irregular routes to cha
Though the irregular routes break Feigenbaum’s asymp
cally universal scaling, these routes are convergent. We h
noted that for the mapf l,m(x) @ f r ,s(x) in Eq. ~2.7! or f a,b(x)
in Eq. ~2.9!#, the parameter values$ln ,mn% of the irregularly
mixed Z* n (Z5DC or XDYC) form the convergent series
So the sum of distances of every two adjacent points,

Ul,m;n5(
j 52

n

dl,m;( j 21,j ) , ~4.7!

can clearly reflect the convergence of the irregular rou
~Table IV!, because there is a Cesa`ro summability for these
routes. However,Ul,m;n is not a ratio; it depends on the ma
f l,m(x). If noting that in the product sequence, where the
aren Z’s,

Z* n5Z* Z* . . . * Z* Z* Z* . . . * Z,
l l

sa sb

every three DSS sequences and every two multiplica
symbols contribute alocal convergent ratedsasb, and there
are four types ofdsasb, i.e., d00, d01, d10, andd11, then we
can use an average convergent rate^d&n to describe an ir-
regular route~irregularly mixed productZ* n), namely,

^d&n5
1

n22 (
j 53

n

d j
s j 22s j 21 . ~4.8a!

This ^d&n can also be thought of as a weighted average va
for four types of convergence
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TABLE IV. A numerical example of theirregularly mixed period-tripling dual-star product (DLC)* n for the mapsf r ,s(x) and f a,b(x).
Here we do not list the parameter values of (an ,bn).

n Sequence (DLC)* n (r n ,sn) Ur ,s;n Ua,b;n

1 (DLC) (20.213 267 757 584, 0.713 267 757 584)
2 (DLC)* (n21)* (DLC) (20.175 493 551 200, 0.768 859 311 538) 0.067 210 948 059 4 0.177 809 314 3
3 (DLC)* (n21)* (DLC) (20.173 435 246 026, 0.772 465 195 875) 0.071 362 938 189 1 0.189 147 505 9
4 (DLC)* (n21)*̄ (DLC) (20.173 384 657 188, 0.772 632 719 206) 0.071 537 933 323 4 0.189 658 575 0

5 (DLC)* (n21)* (DLC) (20.173 371 726 413, 0.772 658 463 428) 0.071 566 742 521 2 0.189 738 793 0
6 (DLC)* (n21)* (DLC) (20.173 370 930 075, 0.772 660 051 181) 0.071 568 518 785 3 0.189 743 739 9
7 (DLC)* (n21)*̄ (DLC) (20.173 370 898 152, 0.772 660 116 294) 0.071 568 591 302 6 0.189 743 942 5

8 (DLC)* (n21)*̄ (DLC) (20.173 370 897 819, 0.772 660 116 973) 0.071 568 592 059 3 0.189 743 944 6

9 (DLC)* (n21)*̄ (DLC) (20.173 370 897 815, 0.772 660 116 981) 0.071 568 592 068 4 0.189 743 944 7
r
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^d&n5 (
sa50

1

(
sb50

1

pn
sasb^dsasb&n ,

~4.8b!

pn
sasb5

Nn
sasb

Nn
001Nn

011Nn
101Nn

11
,

whereNn
sasb denotes the number of thesasb-type conver-

gent rates, and̂dsasb&n the average value of thesasb-type
convergent rates inn22 local convergent rates ofZ* n. Thus
the limit values^d&`[ lim

n→`
^d&n can reflect the irregula

routes. It is obvious that for a pure up-star~or pure down-
star! product,^d&` returns to the value ofd̄ ~or d); this can
be verified according to Cesa`ro summability, becausedn

00

→ d̄ ~or dn
11→d) hold for sufficiently largen values.

It should be indicated that̂d&n cannot distinguish two
different routes with the same weightspn

sasb , sa ,sb

P$0,1%. ^d&n is a characteristic quantity for the irregula
routes, but it is not very satisfactory at present.

E. Grammatical complexity of patterns of dual-star products

Recently, the studies of grammatical complexity of sy
bolic dynamical systems of two letters in unimodal ma
have received increasing attention@36,10#. Now for dynami-
cal systems of three letters in bimodal maps, the gramma
complexity of their formal languages will greatly increa
due to the existence of infinitely many patterns of dual-s
products.

In symbolic dynamics of two letters of unimodal map
the general periodic sequences~including primitive se-
quences and compound sequences generated by a finite
ber of DGP star compositions! with nonpositive Lyapunov
exponents and the eventually periodic sequences with p
tive Lyapunov exponents belong to the simplestregular lan-
guage, i.e., the type-3 languageL3 ~the lowest level! of the
Chomsky hierarchy@35,36,42–44#. The Feigenbaum-type
limit attractors are described by the infinite DGP star pro
ucts (WC)* ` ~quasiperiodic sequences!, whose Lyapunov
exponents can be regarded as zero because they are the
cal values from negative to positive ones; it is proven t
their language is not thecontext-free language~CFL! or the
type-2 languageL2 of the Chomsky hierarchy; it is in fact a
extended tabled zero-sided Lindenmayer~ET0L! language
-
s

al

r

,

um-

si-

-

riti-
t

@36,45–47#, and, consequently, acontext-sensitive languag
~CSL! or the type-1 languageL1 of the Chomsky hierarchy
which belongs to the proper subclass of theindexed~IND!
languages, namely,

L~ET0L!,L~ IND!,L~CS!,
Þ Þ

whereL(CS) represents the language class of all the CS
and the meanings ofL(ET0L) and L(IND) are similar.
These results may be correct for the dynamical system
three letters of bimodal maps, all the regular routes w
metric universal scalings correspond to the type-3 and typ
languages (L3 andL1).

However, the CFL~type-2 languageL2) has not yet been
found in admissible sequences of symbolic dynamics of u
modal maps@36#, although the other three classes of la
guages of the Chomsky hierarchy, even the languages w
noncomputable complexity beyond the Chomsky hierarc
~such as the Bernoulli-Chaitin-Ford infinite sequenc
@48,49,31#!, exist. It is conjectured that the type-2 langua
of the Chomsky hierarchy does not exist in the formal la
guages of unimodal maps@36#.

In symbolic dynamics of three letters of bimodal map
due to the appearances of up- and down-star products
constructions of admissible sequences become enormo

rich. The $0,1% patterns of dual-star products$ *̄ ,* % form a
complete set, which cover all the infinitely many combina
rial types. Binary numbers corresponding to patterns a
cover the real numbers on the interval@0,1# which possess
the cardinal number of the continuum. Thus we can const
or introduce a new class of languages for symbolic patte
of dual-star products. This class of abstract languages
symbolic patterns would cover all four classes of the Cho
sky hierarchy, and perhaps even go beyond these four cla
to reach the language of noncomputable random patte
Among them, the abstract Dyck language can be easily p
duced. For instance, take the symbolic patternss of $0,1%,
and let`s be the complete set of all patterns; then for t
patternsP`s, one can construct the grammarss→0s0 or
1s1, s→ss, . . . . Such resulting languages are a class
Dyck languages of patterns. Therefore, a new way to link
abstract languages of patterns of dual-star products with
mal languagesL(KS) of admissible kneading sequences
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possible. Is there a Dyck language for admissible sequen
This interesting problem is worth further discussion in t
future.

V. GLOBAL REGULARITY OF FRACTAL DIMENSIONS
FOR FEIGENBAUM-TYPE ATTRACTORS

IN BIMODAL MAPS

In this section, we show a global regularity of fractal d
mensions on critical points~accumulation points! of transi-
tions to chaos for bimodal systems, which is a generaliza
of a global regularity of Feigenbaum-type attractors in u
modal maps found ten years ago@37#. We now give a brief
review.

For unimodal maps, an orbit can be characterized by
sequence~i.e., a MSS sequence! WC which is a superstable
sequence of periodp5uWCu. A Feigenbaum-type attracto
refers to a period-p-tupling attractor formed on the accumu
lation point corresponding to the infinite DGP star produ
(WC)* `. One knows that the dimensiond(WC) reflects the
result of the self-similar orbital limit whenWC becomes
infinite (WC)* `, and the scaling factora(WC) describes
the self-similarity of orbits of (WC)* `. A global relationship
between these two characteristic quantities with a high p
cision was found in Ref.@37# as

d~WC!loguWCuua~WC!u5b (1), ~5.1!

whereb (1) is universal for all the infinitely many MSS se
quencesWC ~or for all Feigenbaum-type attractors!. For the
quadratic map, its value isbc

(1)50.71749 for the capacity
dimensiondc andb i

(1)50.68436 for the information dimen
sion di , with the standard deviationssb

c
(1)50.00401 and

sb
i
(1)50.00227 by using the least-squares method. It sho

be emphasized that Feigenbaum’s universalities@such as the
scaling factora(WC) and the convergent rated(WC)# are
strongly dependent on the MSS sequencesWC; while Eq.
~5.1! is independent of the MSS sequencesWC, it is a global
superuniversality on the accumulation points in the o
dimensional unimodal Feigenbaum scenario.

For bimodal maps f l,m(x), for a DSS sequenceZ
5XDYC of periodp, we have two accumulation points du
to the existence of two bifurcation modes~the up-starZ*

¯`

and down-starZ* `). Therefore, a DSS sequence can lead
two Feigenbaum-type~period-p-tupling! attractors formed
on two accumulation points (l̄` ,m̄`) and (l` ,m`), respec-
tively. To explore the global regularity of fractal dimension
we should compute the capacity dimensionsdcP$d̄c ,dc%
and the information dimensionsdiP$d̄i ,di% of the period-
p-tupling attractors. It is known that a period-p-tupling at-
tractor forms a multiscale Cantor set that is not exactly s
similar. In the following, we shall briefly describe the ge
metric construction of the period-p-tupling attractor and the
method for computing the fractal dimensions@50#.

Consider a bimodal mapf ` obtained as the bifurcation
limit of pn cycles. For the concrete cubic mapf r ,s(x) in Eq.
~2.7!, this period-p-tupling limit map is given by

xn115 f `~xn![r `1s`~4x323x!. ~5.2!
s?

n
-

U

t

e-

ld

-

o

,

f-

For example, the parameter values of the PD
limit map corresponding to the pure up-star produ
(DC)*

¯` are (r̄ ` ,s̄`)5(20.1504619259273784
0.6504619259273784! ~see Table V!. For x lying in the dy-
namical invariant subinterval,I U5@ f `(xD), f `(xC)#, f `(x)
will remain in I U . For the limit map~5.2!, xC520.5, xD
50.5. By following the itinerary of the peakC at xC , we can
obtain the points of the period-p-tupling attractor on arbi-
trary nth level: x15 f `(xC), x25 f `

2 (xC), . . . ,x2pn21

5 f `
2pn21

(xC). These 2pn21 points form the end points o
Nn5pn21 subintervals~point-clusters!. The attractor is con-
structed on thenth level by removing all the line intervals
outside theseNn subintervals fromI U . Such a procedure
should be carried onad infinitum, which is precisely the
geometric construction of a multiscale Cantor set. We ta
the two adjacent end points as a minimal covering of
subinterval; then the length of thej th covering on thenth
level would be@37,51#

l n; j5uxj2xj 1pn21u. ~5.3!

We can also construct the attractor by following the itinera
of the valley D at xD : x185 f `(xD), x28

5 f `
2 (xD), . . . ,x2pn218 5 f `

2pn21
(xD). The j th covering on the

nth level still has the similar form,l n; j8 5uxj82xj 1pn218 u. We
can take any one of these two constructions because the
equivalent under the limitn→`. In Fig. 2 we show the PDB
limit map and the geometric construction of the perio
doubling attractor corresponding to (DC)*

¯`.
It is easy to compute the capacity dimensionsdc and the

information dimensionsdi of the period-p-tupling attractors
according to Refs.@50,9#. Let L5 f `(xC)2 f `(xD) be a

FIG. 2. The PDB limit mapf `(x) of up-star product (DC)*
¯`.

The iterative images of the peakC exhibit the geometric construc
tion of a period-doubling attractor.
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TABLE V. The parameter values of accumulation points (r̄ ` ,s̄`) of up-star productsZ*
¯n of basic period

p5224 for the cubic mapf r ,s(x).

p SequenceZ ( r̄ ` ,s̄`)

2 DC (20.150 461 925 927 378 4, 0.650 461 925 927 378 4)
3 DLC (20.226 152 433 702 457 6, 0.726 152 433 702 457 6)
3 RDC ~0.173 308 249 343 404 2, 0.772 725 845 666 879 1!

4 DLLC (20.245 654 715 129 384 2, 0.745 654 715 129 384 2)
4 RDLC (20.001 109 762 767 872 1, 0.947 354 406 614 981 8)
4 DLMC (20.150 461 925 927 378 4, 0.650 461 925 927 378 4)
4 RMDC ~0.094 799 379 455 713 3, 0.700 778 839 715 518 2!

4 RRDC ~0.230 322 376 337 138 9, 0.760 918 525 589 362 0!
in

e

i

tal
By
d

l

la-
renormal scale; we can convert the dynamical invariant
tervalI U to the interval@0,1#. The lengths of theNn subinter-
vals on thenth level would becomeLn; j5 l n; j /L. The capac-
ity dimensiondc is determined by Newton’s method from
the sum rule

(
j 51

Nn

Ln; j
dc 51. ~5.4!

The information dimensiondi is given by

di5

(
j 51

Nn

Pn; j ln Pn; j

(
j 51

Nn

Pn; j ln Ln; j

, ~5.5!

wherePn; j is the relative probability of the attractor in th
subintervalLn; j , and we assume that each of theNn sub-
intervals has the same relative probabilityPn; j51/Nn . Theo-
retically, to find the ‘‘exact’’ values ofdc anddi , one should
use Eqs.~5.4! and ~5.5! with the limit n→`, but this is
impossible in an actual calculation. However, as indicated
Ref. @50#, we can takedc,i as the expressionndc,i(n)2(n
21)dc,i(n21) which converges todc,i(`) very rapidly in a
-

n

finite n. In this way we have computed the values ofdc and
di of period-p-tupling attractors withp52 –4. These values
also have the dual symmetry

d̄c~Z!5dc~ Z̃T!, d̄i~Z!5di~ Z̃T!, ~5.6!

so we only list the values ofd̄c and d̄i in Table VI.
We now can generalize the global regularity of frac

dimensions of the unimodal case to the bimodal one.
numerical calculation shown in Tables V and VI, we fin
that the following global relation works very well:

dc,i~Z!loguZuuaC~Z!aD~Z!u5bc,i
(2) , ~5.7!

where bc
(2)51.4339 andb i

(2)51.2945 are universal for al
DSS sequencesZ5XDYC ~or for all period-p-tupling at-
tractors!, andbc,i

(2) are the same for either the up accumu

tion Z*
¯` or the down accumulationZ* ` due to the dual

symmetry of Eqs.~5.6! and ~3.4!, i.e., bc,i
(2)5b̄c,i

(2)5bc,i
(2) . In

comparison with the unimodal case, here in Eq.~5.7! the
contributions of both scaling factors of two turning pointsC
and D have been included. Furthermore, if anequivalent
scaling factorae for bimodal maps is defined by

@ae~Z!#25uaC~Z!aD~Z!u, ~5.8!
TABLE VI. Fractal dimensionsd̄c,i and global constantsbc,i
(2) for period-p-tupling attractors of basic

period p5224 for the cubic map. The constantsbc,i
(2) and the standard deviationssb

c,i
(2) at the bottom are

found by using the least-squares method.

p SequenceZ d̄c(Z) d̄i(Z) āC(Z) āD(Z) bc
(2)(Z) b i

(2)(Z)

2 DC 0.6427 0.5544 21.6903 2.8571 1.4600 1.2595
3 DLC 0.4732 0.4031 23.1522 9.9361 1.4834 1.2638
3 RDC 0.5186 0.4942 23.7018 5.2711 1.4024 1.3365
4 DLLC 0.3768 0.3168 26.1918 38.338 1.4868 1.2498
4 RDLC 0.3602 0.3331 29.0797 27.168 1.4312 1.3235
4 DLMC 0.6427 0.5544 2.8571 8.1632 1.4600 1.2595
4 RMDC 0.6140 0.5873 24.8627 24.8627 1.4010 1.3402
4 RRDC 0.5019 0.4813 26.2185 7.1805 1.3753 1.3189

bc
(2)51.4339 sb

c
(2)50.0146

b i
(2)51.2945 sb

i
(2)50.0145
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then the global regularity~5.7! of bimodal maps can even b
reduced to form~5.1! of unimodal ones, namely,

dc,i~Z!loguZuuae~Z!u5bc,i
(e) , ~5.9!

where theequivalentglobal constants arebc
(e)50.7169 and

b i
(e)50.6473, respectively, and we find that they are a

proximately equal tobc,i
(1) : bc

(e)'bc
(1) within an accuracy of

0.08%, andb i
(e)'b i

(1) within an accuracy of 5%. This resu
may imply that the global regularity~5.1! of unimodal sys-
tems may be a rather general form which may hold fo
wide range of systems, for instance, for trimodal, multim
dal, or even discontinuous systems.

VI. DISCUSSION

From the above we have seen that dual-star products
a key role in the study of universalities in symbolic dynam
of three letters. The metric universalities are related to
renormalization. So the renormalization scheme should
able to be carried out. One can expect that the dual re
malization group equations associated with operation*
P$ *̄ ,* % can be obtained. We have also noted that the th
retical frame of symbolic dynamics of three letters is of pra
tical significance to other physical systems described by s
maps as circle maps, Lorenz maps, etc., because such
in
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continuous maps can be regarded as the breaking or pru
of the continuous bimodal maps. The applications of s
products to these systems will be important in physics@52#.

It is worthy to indicate that the symbolic dynamics of tw
letters in unimodal maps is rather simple in comparison w
that of three letters in bimodal maps. There is only one k
of star product~i.e., a DGP star product! for unimodal maps,
but there are two kinds of dual star products for bimod
maps. Some elementary studies for trimodal maps show
the generalization of star products to trimodal or multimod
maps would be a complicated but accessible problem
addition, there would be a rapid growth in the kinds of s
products when the number of turning points~or parameters!
of the map increases@53#. This increase in the kinds of sta
products will enrich the routes to chaos in trimodal or m
timodal maps, and result in higher degrees of complexity
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